GREGORY J. PRIVITERA

STATISTICS for the **BEHAVIORAL SCIENCES** FOURTH EDITION

Statistics for the Behavioral Sciences

Fourth Edition

Sara Miller McCune founded SAGE Publishing in 1965 to support the dissemination of usable knowledge and educate a global community. SAGE publishes more than 1000 journals and over 800 new books each year, spanning a wide range of subject areas. Our growing selection of library products includes archives, data, case studies and video. SAGE remains majority owned by our founder and after her lifetime will become owned by a charitable trust that secures the company's continued independence.

Los Angeles | London | New Delhi | Singapore | Washington DC | Melbourne

Statistics for the Behavioral Sciences

Fourth Edition

Gregory J. Privitera

St. Bonaventure University

Los Angeles I London I New Delhi Singapore I Washington DC I Melbourne

\$)SA(

FOR INFORMATION: SAGE Publications, Inc. 2455 Teller Road Thousand Oaks, California 91320 E-mail: order@sagepub.com

SAGE Publications Ltd. 1 Oliver's Yard 55 City Road London EC1Y 1SP United Kingdom

SAGE Publications India Pvt. Ltd. Unit No. 323–333, Third Floor, F-Block International Trade Tower Nehru Place, New Delhi–110 019 India

SAGE Publications Asia-Pacific Pte. Ltd. 18 Cross Street #10-10/11/12 China Square Central Singapore 048423 Copyright © 2024 by SAGE Publications, Inc.

All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

All trademarks depicted within this book, including trademarks appearing as part of a screenshot, figure, or other image, are included solely for the purpose of illustration and are the property of their respective holders. The use of the trademarks in no way indicates any relationship with, or endorsement by, the holders of said trademarks. SPSS is a registered trademark of International Business Machines Corporation.

Printed in the United States of America

ISBN: 9781544362816

Library of Congress Control Number: 2023910425

Acquisitions Editor: Leah Fargotstein

Editorial Assistant: Latoya Douse

Production Editor: Vishwajeet Mehra and Syeda Aina Rahat Ali

Copy Editor: Diana Breti

Typesetter: diacriTech

Indexer: Integra

Cover Designer: Candice Harman

Marketing Manager: Victoria Velasquez

This book is printed on acid-free paper.

23 24 25 26 27 10 9 8 7 6 5 4 3 2 1

BRIEF CONTENTS

List of Boxes	xviii
About the Author	xxi
Acknowledgments	xxii
Preface to the Instructor	xxiii
To the Student - How to Use SPSS With This Book	xxxiii

PART I	INTRODUCTION AND DESCRIPTIVE STATISTICS	1
Chapter 1	Introduction to Statistics	2
Chapter 2	Summarizing Data: Frequency Distributions in Tables and Graphs	33
Chapter 3	Summarizing Data: Central Tendency	79
Chapter 4	Summarizing Data: Variability	114

PART II PROBABILITY AND THE FOUNDATIONS OF INFERENTIAL STATISTICS

Chapter 5	Probability	151
Chapter 6	Probability, Normal Distributions, and z Scores	191
Chapter 7	Probability and Sampling Distributions	226
Chapter 8	Hypothesis Testing: Significance, Effect Size, Estimation, and Power	265

150

PART III	MAKING INFERENCES ABOUT ONE OR TWO MEANS	315
Chapter 9	Testing Means: One-Sample <i>t</i> Test With Confidence Intervals	316
Chapter 10	Testing Means: Two-Independent-Sample <i>t</i> Test With Confidence Intervals	351
Chapter 11	Testing Means: Related-Samples <i>t</i> Test With Confidence Intervals	388

PART IV	MAKING INFERENCES ABOUT THE VARIABILITY OF TWO OR MORE MEANS	425
Chapter 12	Analysis of Variance: One-Way Between-Subjects Design	426
Chapter 13	Analysis of Variance: One-Way Within-Subjects (Repeated- Measures) Design	477
Chapter 14	Analysis of Variance: Two-Way Between-Subjects Factorial Design	527
PART V	MAKING INFERENCES ABOUT PATTERNS, FREQUENCIES, AND ORDINAL DATA	587
Chapter 15	Correlation	588
Chapter 16	Linear Regression and Multiple Regression	658
Chapter 17	Nonparametric Tests: Chi-Square Tests	720
Chapter 18	Nonparametric Tests: Tests for Ordinal Data	763
Appendix A - Ove	erview of Core Statistical Concepts in the Behavioral Sciences	813
Appendix B - Bas	sic Math Review and Summation Notation	829
Appendix C - SP Ase	SS General Instructions Guide With Steps for Evaluating sumptions for Inferential Statistics	844
Appendix D - Sta	tistical Tables	860
Appendix E - Cha	pter Solutions for Even-Numbered Problems	879
Glossary		887
References		897
Index		904

DETAILED CONTENTS

List of E	Boxes	xviii
About t	he Author	xxi
Acknow	ledgments	xxii
Preface	to the Instructor	xxiii
To the S	itudent - How to Use SPSS With This Book	xxxiii
PART	I INTRODUCTION AND DESCRIPTIVE STATISTICS	1
Chapte	r 1 Introduction to Statistics	2
1.1	The Use of Statistics in Science	3
1.2	Descriptive and Inferential Statistics Descriptive Statistics Inferential Statistics	5 5 6
1.3	Research Methods and Statistics Experimental Method Quasi-Experimental Method Correlational Method	9 10 12 14
1.4	Scales of Measurement Nominal Scales Ordinal Scales Interval Scales Ratio Scales	15 16 17 18 19
1.5	Types of Variables for Which Data Are Measured Continuous and Discrete Variables Quantitative and Qualitative Variables	21 21 21
1.6	SPSS in Focus: Entering and Defining Variables	24
Cha	apter Summary	27
Key	/ Terms	28
Enc	I-of-Chapter Problems	28
Chapte	r 2 Summarizing Data: Frequency Distributions in Tables	
	and Graphs	33
2.1	Why Summarize Data?	35
2.2	Simple Frequency Distributions for Grouped Data	36
2.3	Other Ways of Summarizing Grouped Data in Frequency Distributions Cumulative Frequency Relative Frequency Relative Percentage	39 41 42 42
2 /.	Identifying Percentile Points and Percentile Panks	43 75
2.4	SPSS in Focus: Frequency Distributions for Quantitative Data	43

	2.6	Frequency Distributions for Ungrouped Data	50
	2.7	SPSS in Focus: Frequency Distributions for Categorical Data	53
	2.8	Pictorial Frequency Distributions	55
	2.9	Graphing Distributions: Continuous Data	57
		Histograms	57
		Frequency Polygons	58
	0.40	Ugives	59
	2.10	Stem-and-Leaf Displays	60
	2.11	Graphing Distributions: Discrete and Categorical Data	62
		Pie Charts	63
	2.12	SPSS in Focus: Histograms, Bar Charts, Pie Charts, and Stem-and-Leaf	
	Disp	lays	67
	Cha	pter Summary	68
	Key	Terms	71
	End	-of-Chapter Problems	71
Cha	aptei	r 3 Summarizing Data: Central Tendency	79
	3.1	Introduction to Central Tendency	80
	3.2	Measures of Central Tendency: The Mean	82
	3.3	Measures of Central Tendency: The Weighted Mean	85
	3.4	Measures of Central Tendency: The Median and the Mode	88
		The Median	88
	0 F	The Mode	91
	3.5	Characteristics of the Mean	92
		Adding a New Score or Removing an Existing Score	72 93
		Adding, Subtracting, Multiplying, or Dividing Each Score by a Constant	94
		Summing the Differences of Scores From Their Mean	95
		Summing the Squared Differences of Scores From Their Mean	96
	3.6	Choosing an Appropriate Measure of Central Tendency	97
		Using the Mean to Describe Data	97
		Describing Normal Distributions Describing Interval and Ratio Scale Data	98
		Using the Median to Describe Data	98
		Describing Skewed Distributions	98
		Describing Ordinal Scale Data	99
		Describing Model Distributions	100
		Describing Nominal Scale Data	100
	3.7	SPSS in Focus: Mean, Median, and Mode	103
	Cha	pter Summary	106
	Key	Terms	107
	End	-of-Chapter Problems	108
Cha	aptei	r 4 Summarizing Data: Variability	114
	- 4.1	Introduction to Variability	116
	42	The Range	117
	4.2	Auartiles and Interguartiles	110
	4.0	adar mes and mer quar mes	117

150

4.4	The Variance	121
	Population Variance	121
	Sample Variance	123
4.5	The Computational Formula for Variance	124
4.6	Explaining Variance for Populations and Samples	128
	The Numerator: Why Square Deviations From the Mean?	128
	The Denominator: Sample Variance as an Unbiased Estimator	129
	The Denominator: Degrees of Freedom	131
4.7	The Standard Deviation	132
4.8	The Informativeness of Standard Deviation	134
	The Empirical Rule	134
	Characteristics of the Standard Deviation	136
4.9	SPSS in Focus: Range, Quartiles, Variance, and Standard Deviation	139
Cha	apter Summary	141
Key Terms		144
Enc	I-of-Chapter Problems	144

PART II PROBABILITY AND THE FOUNDATIONS OF INFERENTIAL STATISTICS Chapter 5 Probability

Chapter 5 Probability	151
5.1 Introduction to Probability	152
5.2 Probability and Relative Frequency	156
Step 1: Distribute the Frequencies	156
Step 2: Distribute the Relative Frequencies	156
5.3 The Relationship Between Multiple Outcomes	159
Mutually Exclusive Outcomes	160
Independent Outcomes	160
Complementary Outcomes	161
	162
5.4 Conditional Probabilities and Bayes's Theorem	164
5.5 SPSS in Focus: Probability Tables	166
Construct a Probability Table	166
Construct a Conditional Probability Table	167
5.6 Probability Distributions	169
5.7 The Mean of a Probability Distribution and Expected Va	lue 172
5.8 The Variance and Standard Deviation of a Probability Di	stribution 176
5.9 Expected Value and the Binomial Distribution	179
The Mean of a Binomial Distribution	180
The Variance and Standard Deviation of a Binomial Distribu	ition 180
Chapter Summary	182
Key Terms	184
End-of-Chapter Problems	185
Chapter 6 Probability, Normal Distributions, and z Sco	ores 191
6.1 Characteristics of the Normal Distribution	192
6.2 The Standard Normal Distribution and the z Transform	ation 196

6.3	The Unit Normal Table: A Brief Introduction	199
6.4	Locating Proportions	201
	Locating Proportions Above the Mean	201
	Locating Proportions Below the Mean	203
	Locating Proportions Between Two Values	206
6.5	Locating Scores	208
6.6	SPSS in Focus: Converting Raw Scores to Standard z Scores	212
6.7	The Normal Approximation to the Binomial Distribution	214
	Going From Binomial to Normal	214
	Using the Normal Approximation to the Binomial Distribution	217
Cha	pter Summary	219
Key	lerms	221
End	-of-Chapter Problems	221
Chapte	r 7 Probability and Sampling Distributions	226
7.1	Selecting Samples From Populations	228
	Inferential Statistics and Sampling Distributions	228
	Sampling and Conditional Probabilities	228
7.2	Selecting a Sample: Who's In and Who's Out?	230
	Sampling Strategy: The Basis for Statistical Theory	232
	Sampling Strategy: Most Used in Behavioral Research	233
7.3	Sampling Distributions: The Mean	235
	Unblased Estimator	236
	Minimum Variance	230
74	Sampling Distributions: The Variance	241
7.4	Unbiased Estimator	241
	Skewed Distribution Rule	243
	No Minimum Variance	243
7.5	The Standard Error of the Mean	246
7.6	Factors That Decrease Standard Error	248
7.7	SPSS in Focus: Estimating the Standard Error of the Mean	249
7.9	Standard Normal Transformations With Sampling Distributions	254
Cha	pter Summary	257
Key	Terms	259
End	-of-Chapter Problems	259
Chapte	r 8 Hypothesis Testing: Significance, Effect Size, Estimation,	
	and Power	265
8.1	The Informativeness of Evaluating Effects in Science	267
8.2	Inferential Statistics and Applying the Steps to Hypothesis Testing	268
	Inferential Statistics and Hypothesis Testing	269
	Four Steps to Hypothesis Testing	270
	Hypothesis lesting and Sampling Distributions	275
8.3	Making a Decision: Types of Error	277
	Decision: Fail to Reject the Null Hypothesis	277
	Decision: Reject the Nutt Hypothesis	2/8

8.4 Testing for Significance: Examples Using the z Test	279
Nondirectional Tests (H1: ≠)	279
Directional Tests (H1: > or H1: <)	282
8.5 Measuring the Size of an Effect: Cohen's <i>d</i>	287
8.6 Confidence Intervals for the One-Sample <i>z</i> Test	290
Three Steps to Estimation	290
Inferring Significance and Effect Size From a Confidence Interval	293
8.7 Factors That Influence Power	294
The Relationship Between Effect Size and Power	294
The Relationship Between Sample Size and Power	297
Additional Factors That Increase Power: Alpha, Beta, Standard Deviation (σ),	and
Standard Error	298
8.8 Assumptions of Parametric Testing: Normality and Nonparametric	
Alternatives	300
8.9 SPSS in Focus: A Preview for Analyzing Inferential Statistics	304
Chapter Summary	305
Key Terms	309
End-of-Chapter Problems	309

PART	III MAKING INFERENCES ABOUT ONE OR	215
	I WO MEANS	315
Chapte	r 9 Testing Means: One-Sample <i>t</i> Test With Confidence Intervals	316
9.1	Going From z to t	318
9.2	The Degrees of Freedom	320
9.3	Reading the t Table	321
9.4	Computing the One-Sample <i>t</i> Test	323
9.5	Effect Size for the One-Sample <i>t</i> Test	327
	Estimated Cohen's d	327
	Proportion of Variance	328
	Eta-Squared (η²) Omega Squared (μ²)	328
04	Confidence Intervals for the One Sample t Test	220
7.0		220
9.7	Inferring Significance and Effect Size From a Confidence Interval	33Z
9.8	SPSS in Focus: One-Sample <i>t</i> Test and Confidence Intervals	334
	Data Entry for the One-Sample / Test Evaluating Assumptions for the One-Sample / Test	334
	Computing the One-Sample <i>t</i> Test and Confidence Intervals	336
Cha	ipter Summary	340
Key	Terms	343
Enc	I-of-Chapter Problems	343
Chapte	r 10 Testing Means: Two-Independent-Sample <i>t</i> Test With	
	Confidence Intervals	351
10.1	Introduction to the Between-Subjects Design	353
10.2	2 Selecting Two Independent Samples	354
10.3	8 Variability and Comparing Differences Between Two Groups	355

10.4 Computing the Two-Independent-Sample <i>t</i> Test	357
10.5 Effect Size for the Two-Independent-Sample <i>t</i> Test	364
Estimated Cohen's d	364
Proportion of Variance	365
Eta-Squared (η^2)	365
Omega-Squared (@°)	365
10.6 Confidence Intervals for the Two-Independent-Sample <i>t</i> Test	366
10.7 Inferring Significance and Effect Size From a Confidence Interval	368
10.8 SPSS in Focus: Two-Independent-Sample <i>t</i> Test and Confidence Intervals	369
Data Entry for the Two-Independent-Sample <i>t</i> Test	370
Evaluating Assumptions for the Two-Independent-Sample <i>t</i> Test	370
Computing the Two-Independent-Sample <i>t</i> Test and Confidence Intervals	372
Chapter Summary	375
Key Terms	378
End-of-Chapter Problems	378
Chapter 11 Testing Means: Related-Samples <i>t</i> Test With Confidence	
Intervals	388
11.1 Selecting Related Samples	390
The Repeated-Measures Design	390
The Matched-Pairs Design	391
11.2 Advantages of Selecting Related Samples	393
11.3 Introduction to the Related-Samples t Test	394
Computing Difference Scores	394
The Test Statistic	396
Degrees of Freedom	396
11.4 Computing the Related-Samples t Test	397
11.5 Measuring Effect Size for the Related-Samples t Test	402
Estimated Cohen's d	403
Proportion of Variance	403
Eta-Squared (η^2)	403
Umega-Squared (ω^{-})	404
11.6 Confidence Intervals for the Related-Samples <i>t</i> Test	405
11.7 Inferring Significance and Effect Size From a Confidence Interval	407
11.8 SPSS in Focus: Related-Samples <i>t</i> Test and Confidence Intervals	408
Data Entry for the Related-Samples <i>t</i> Test	408
Evaluating Assumptions for the Related-Samples t Test	409
Computing the Related-Samples t lest and Confidence Intervals	410
Chapter Summary	413
Key Terms	415
End-of-Chapter Problems	415

/ MAKING INFERENCES ABOUT THE VARIABILITY	
OF TWO OR MORE MEANS	425
12 Analysis of Variance: One-Way Between-Subjects Design	426
Introduction to Analysis of Variance	428
Selecting Two or More Independent Samples	430
	 MAKING INFERENCES ABOUT THE VARIABILITY OF TWO OR MORE MEANS 12 Analysis of Variance: One-Way Between-Subjects Design Introduction to Analysis of Variance Selecting Two or More Independent Samples

12.3 The Test Statistic and Sources of Variation	431
12.4 Degrees of Freedom	434
12.5 The One-Way Between-Subjects ANOVA	437
12.6 Post Hoc Tests	446
Next Steps Following an ANOVA Test	446
Computing a Post Hoc Test: An Example Using Tukey's Honestly Significant	
Difference (HSD) Test	448
12.7 Measuring Effect Size Eta Sauarad (r^2 as P^2)	450
Omega-Squared (m ²)	451
12.8 SPSS in Focus: The One-Way Between-Subjects ANOVA	452
Data Entry for the One-Way Between-Subjects ANOVA	452
Evaluating Assumptions for the One-Way Between-Subjects ANOVA	453
Computing the One-Way Between-Subjects ANOVA	456
Chapter Summary	463
Key Terms	466
End-of-Chapter Problems	466
Chapter 13 Analysis of Variance: One-Way Within-Subjects	
(Repeated-Measures) Design	477
13.1 Analysis of Variance for a Within-Subjects Factor	479
13.2 The Test Statistic and Sources of Variation	480
13.3 Degrees of Freedom	400
13 / The One-Way Within-Subjects ANOVA	404
13.5 Post Hoc Comparisons, Bonferroni Procedure	400
Step 1	495
Step 2	495
13.6 Measuring Effect Size	497
Partial Eta-Squared $[\eta_P^2]$	497
Partial Omega-Squared $[\omega_P^2]$	498
13.7 SPSS in Focus: The One-Way Within-Subjects ANOVA	499
Data Entry for the One-Way Within-Subjects ANOVA	500
Evaluating Assumptions for the One-Way Within-Subjects ANOVA	500
12.0 The Within Subjects Design Consistency and Dewen	502
Charter Currenter	507
Chapter Summary	511
Key lernis	514
End-of-Chapter Problems	514
Chapter 14 Analysis of Variance: Two-Way Between-Subjects	
Factorial Design	527
14.1 Analysis of Variance With Two Factors	529
Increasing the Complexity of Design	529
New Terminology and Notation	530
14.2 Designs for the Two-Way ANOVA	532
The 2-Between or Between-Subjects Design	532 532
The 2-Within or Within-Subjects Design	534
, ,	

14.3 Describing Variability: Main Effects and Interactions	535
Sources of Variability	536
Testing Main Effects	538
Testing the Interaction	538
Identifying Main Effects and Interactions in a Graph	539
14.4 The Two-Way Between-Subjects ANOVA	543
14.5 Analyzing Main Effects and Interactions	554
Interactions: Simple Main Effect Tests	554
Step 1: Choose How to Describe the Data	555
Step 2: Compute Simple Main Effect Tests	556
Step 3: Compute Pairwise Comparisons	557
Main Effects: Pairwise Comparisons	558
14.6 Measuring Effect Size	559
Eta-Squared (η^2 or R^2)	559
Omega-Squared (ω^2)	560
14.7 SPSS in Focus: The Two-Way Between-Subjects ANOVA	562
Data Entry for the Two-Way Between-Subjects ANOVA	562
Evaluating Assumptions for the Two-Way Between-Subjects ANOVA	562
Computing the Two-Way Between-Subjects ANOVA	567
Chapter Summary	571
Key Terms	574
End-of-Chapter Problems	574

PART V MAKING INFERENCES ABOUT PATTERNS, FREQUENCIES, AND ORDINAL DATA

Chapter 15 Correlation	588
15.1 The Structure of a Correlational Design	590
Structuring Observations to Measure a Correlation	590
The Direction of a Correlation	591
The Strength of a Correlation	593
15.2 The Pearson Test Statistic and Sources of Variability	595
15.3 Assumptions for the Pearson Correlation Coefficient	598
Homoscedasticity	598
Linearity	598
Normality	599
15.4 Pearson Correlation Coefficient	601
Computing the Correlation Coefficient <i>r</i>	601
Hypothesis Testing for Significance	604
15.5 Effect Size: The Coefficient of Determination	606
15.6 SPSS in Focus: Pearson Correlation Coefficient	606
Data Entry for the Pearson Correlation Coefficient	607
Evaluating Assumptions for the Pearson Correlation Coefficient	607
Computing the Pearson Correlation Coefficient	610
 15.7 Limitations in Interpretation: Causality, Outliers, and Restriction of Range	612
Causality	613
Outliers	613
Restriction of Range 15.0 Allowed in the Description Construction On Allowed Interpretations	615
15.8 Alternative to Pearson's r: Spearman Correlation Coefficient	616

587

15.9 SPSS in Focus: Spearman Correlation Coefficient Data Entry for the Spearman Correlation Coefficient Evaluating Assumptions for the Spearman Correlation Coefficient Computing the Spearman Correlation Coefficient	620 620 620 622
15.10 Alternative to Pearson's r: Point-Biserial Correlation Coefficient	623
15.11 SPSS in Focus: Point-Biserial Correlation Coefficient	628
Data Entry for the Point-Biserial Correlation Coefficient	628
Evaluating Assumptions for the Point-Biserial Correlation Coefficient	628 630
15.12 Alternative to Pearson's r. Phi Correlation Coefficient	632
15.12 SPSS in Eacus: Phi Correlation Coefficient	636
Data Entry for the Phi Correlation Coefficient	636
Evaluating Assumptions for the Phi Correlation Coefficient	637
Computing the Phi Correlation Coefficient	638
Chapter Summary	641
Key Terms	646
End-of-Chapter Problems	646
Chapter 16 Linear Regression and Multiple Regression	658
16.1 The Structure of Linear Regression	660
16.2 What Makes the Regression Line the Best-Fitting Line?	662
16.3 The Slope and y-Intercept of a Straight Line	666
16.4 Using the Method of Least Squares to Find the Best Fit	668
16.5 Evaluating Significance Using Analysis of Regression	671
16.6 Using the Standard Error of Estimate to Measure Accuracy	676
16.7 SPSS in Focus: Analysis of Regression	679
Data Entry for the Analysis of Regression	680
Evaluating Assumptions for the Analysis of Regression	680
Computing the Analysis of Regression	682
16.8 Introduction to Multiple Regression	685
16.9 Evaluating Significance Using Multiple Regression	686
16.10 The β Coefficient for Multiple Regression	692
16.11 Evaluating Significance for the Relative Contribution of Each Predictor	
Variable	693
Relative Contribution of X ₁ Relative Contribution of X.	694 695
16.12 SPSS in Focus: Multiple Regression Analysis	696
Data Entry for the Multiple Regression Analysis	696
Evaluating Assumptions for the Multiple Regression Analysis	697
Computing the Multiple Regression Analysis	699
Chapter Summary	702
Key Terms	706
End-of-Chapter Problems	707
Chapter 17 Nonparametric Tests: Chi-Square Tests	720
17.1 Introduction to the Chi-Square Test	722
17.2 Comparing Observed and Expected Frequencies for the	F • 7
Goodness-of-Fit lest	723

17.3 The Test Statistic and Degrees of Freedom for the Goodness-of-Fit Test The Test Statistic The Degrees of Freedom	725 725 726
17.4 Computing the Chi-Square Goodness-of-Fit Test	728
17.5 Interpreting the Chi-Square Goodness-of-Fit Test Interpreting a Significant Chi-Square Goodness-of-Fit Test Using the Chi-Square Goodness-of-Fit Test to Support the Null Hypothesis	731 731 732
17.6 SPSS in Focus: The Chi-Square Goodness-of-Fit Test Data Entry for the Chi-Square Goodness-of-Fit Test Evaluating Assumptions for the Chi-Square Goodness-of-Fit Test Computing the Chi-Square Goodness-of-Fit Test	733 733 734 734
17.7 Introduction to the Chi-Square Test for Independence	737
17.8 Computing the Chi-Square Test for Independence Determining Expected Frequencies The Test Statistic The Degrees of Freedom	739 741 741 742
Hypothesis lesting for Independence	742
 17.9 The Relationship Between Chi-Square and the Phi Coefficient 17.10 Measures of Effect Size Effect Size Using Proportion of Variance Effect Size Using the Phi Coefficient Effect Size Using Cramer's V 	744 746 746 747 747
17.11 SPSS in Focus: The Chi-Square Test for Independence Data Entry for the Chi-Square Test for Independence Evaluating Assumptions for the Chi-Square Test for Independence Computing the Chi-Square Test for Independence	748 748 749 750
Chapter Summary	752
Key Terms	755
End-of-Chapter Problems	755
Chapter 18 Nonparametric Tests: Tests for Ordinal Data	763
18.1 Tests for Ordinal Data Assumptions and Nonparametric Testing Scales of Measurement and Variance Minimizing Bias: Tied Ranks	765 765 765 766
18.2 The Sign Test The One-Sample Sign Test The Related-Samples Sign Test The Normal Approximation for the Sign Test	767 768 769 772
18.3 SPSS in Focus: Computing the Related-Samples Sign Test	773
18.4 The Wilcoxon Signed-Ranks T Test Interpretation of the Test Statistic T The Normal Approximation for the Wilcoxon T	775 778 778
18.5 SPSS in Focus: Computing the Wilcoxon Signed-Ranks <i>T</i> Test	779
18.6 The Mann-Whitney U Test	781
Interpretation of the Test Statistic <i>U</i> Computing the Test Statistic <i>U</i> The Normal Approximation for <i>U</i>	784 784 785
18.7 SPSS in Focus: Computing the Mann-Whitney U Test	786

18.8 The Kruskal-Wallis H Test	788
Interpretation of the Test Statistic H	791
18.9 SPSS in Focus: Computing the Kruskal-Wallis <i>H</i> Test	792
18.10 The Friedman Test	794
Interpretation of the Test Statistic $\chi^2_{{m R}}$	795
18.11 SPSS in Focus: Computing the Friedman Test	796
Chapter Summary	799
Key Terms	802
End-of-Chapter Problems	802
Appendix A - Overview of Core Statistical Concepts in the Behavioral Sciences	813
Appendix B - Basic Math Review and Summation Notation	829
Appendix C - SPSS General Instructions Guide With Steps for Evaluating	
Assumptions for Inferential Statistics	844
Appendix D - Statistical Tables	860
Appendix E - Chapter Solutions for Even-Numbered Problems	879
Glossary	887
References	897
Index	00%

LIST OF BOXES

CHAPTER 1

Making Sense: Populations and Samples Making Sense: Experimental and Control Groups Making Sense: Treating Rating Scales as Interval Scale Measures Data In Research: Evaluating Data and Scales of Measurement

CHAPTER 2

Data in Research: Summarizing Demographic Information Making Sense: Deception Due to the Distortion of Data Data in Research: Frequencies and Percentages

CHAPTER 3

Making Sense: Making the Grade Data in Research: Describing Central Tendency

CHAPTER 4

Data in Research: Reporting the Range Making Sense: Standard Deviation and Nonnormal Distributions

CHAPTER 5

Making Sense: Probability and Predicting Behavioral Outcomes Making Sense: Expected Value and the "Long-Term Mean" Data in Research: When Are Risks Worth Taking?

CHAPTER 6

Data in Research: The Statistical Norm Making Sense: Standard Deviation and the Normal Distribution

CHAPTER 7

Making Sense: The Central Limit Theorem Applied Making Sense: Minimum Variance Versus Unbiased Estimator 7.8 APA in Focus: Reporting the Standard Error Data In Research: Ethical Considerations When "Collecting Data"

CHAPTER 8

Making Sense: Testing the Null Hypothesis Data in Research: Directional Versus Nondirectional Tests Making Sense: Power and Estimating Sample Size for Hypothesis Testing 8.10 APA in Focus: Reporting the Test Statistic and Effect Size

CHAPTER 9

Making Sense: Degrees of Freedom for Parametric Testing 9.9 APA in Focus: Reporting the *t* Statistic and Confidence Intervals

CHAPTER 10

Making Sense: The Pooled Sample Variance 10.9 APA in Focus: Reporting the *t* Statistic and Confidence Intervals

CHAPTER 11

Making Sense: Increasing Power by Reducing Error 11.9 APA in Focus: Reporting the *t* Statistic and Confidence Intervals

CHAPTER 12

Making Sense: Mean Squares and Variance 12.9 APA in Focus: Reporting the *F* Statistic, Significance, and Effect Size

CHAPTER 13

Making Sense: Mean Squares and Variance 13.8 APA in Focus: Reporting the *F* Statistic, Significance, and Effect Size

CHAPTER 14

Making Sense: Outcomes and Order of Interpretation 14.8 APA in Focus: Reporting Main Effects, Interactions, and Effect Size

CHAPTER 15

Making Sense: Understanding Covariance 15.14 APA in Focus: Reporting Correlations

CHAPTER 16

Making Sense: Evaluating Linearity and Homoscedasticity by Plotting the Residuals Making Sense: *SP, SS*, and the Slope of a Regression Line 16.13 APA in Focus: Reporting Regression Analysis

CHAPTER 17

Making Sense: The Relative Size of a Discrepancy Making Sense: Degrees of Freedom 17.12 APA in Focus: Reporting the Chi-Square Test

CHAPTER 18

Making Sense: Reducing Variance 18.12 APA in Focus: Reporting Nonparametric Tests

ABOUT THE AUTHOR

Gregory J. Privitera is a professor of psychology at St. Bonaventure University where he is a recipient of its highest teaching honor, the Award for Professional Excellence in Teaching, and its highest honor for scholarship, the Award for Professional Excellence in Research and Publication. Dr. Privitera received his PhD in behavioral neuroscience in the field of psychology at the State University of New York at Buffalo and continued with his postdoctoral research at Arizona State University. He is a nationally awardwinning author and research scholar. His textbooks span diverse topics in psychology and the behavioral sciences, including two

introductory psychology texts (one upcoming), four statistics texts, two research methods texts, and multiple other texts bridging knowledge creation across health, health care, and well-being. In addition, Dr. Privitera has authored more than three dozen peer-reviewed papers aimed at advancing our understanding of health and well-being. His research has earned recognition by the American Psychological Association and in media and press to include *Oprah's Magazine, Time Magazine,* and the *Wall Street Journal*. He oversees a variety of undergraduate research projects at St. Bonaventure University, where dozens of undergraduate students, many of whom have gone on to earn graduate and doctoral degrees at various institutions, have coauthored research in his laboratories. In addition to his teaching, research, and advisement, Dr. Privitera is a veteran of the U.S. Marine Corps, is an identical twin, and is married with four children: two daughters, Grace Ann and Charlotte Jane, and two sons, Aiden Andrew and Luca James.

ACKNOWLEDGMENTS

I want to take a moment to thank all those who have been supportive and encouraging throughout my career. To my family, friends, acquaintances, and colleagues—thank you for contributing to my perspective in a way that is indubitably recognized and appreciated. In particular to my sons, Aiden Andrew and Luca James, and to my daughters, Grace Ann and Charlotte Jane—every moment I am with you I am reminded of what is truly important in my life. As a veteran, I also want to thank all those who serve and have served—there is truly no greater honor than to serve something greater than yourself. Semper Fi!

To all those at SAGE Publications, know that I am truly grateful to be able to share and work with all of you. Your vital contributions have made this book possible and so special to me. Thank you.

I especially want to thank the thousands of statistics students across the country who will use this book. It is your pursuit of education that has inspired this contribution. My hope is that you take away as much from reading this book as I have from writing it.

Last, but certainly not least, I would also like to thank the many reviewers who gave me feedback during the development process.

Chris Aberson, Humboldt State University Chieh-Chen Bowen, Cleveland State University Ricki M. Boyle, Lackawanna College Scott D. Bradshaw, Elizabeth City State University Kelli Callahan, Bellevue College Hilary Campbell, Blue Ridge Community College Crystal Chapman, Francis Marion University Robyn Cooper, Drake University Dana Donohue, Northern Arizona University Leslie Echols, Missouri State University Gayle G. Faught, University of South Carolina Aiken David Johnson, The City University of New York Erin Fekete, University of Indianapolis Josh Karelitz, Pennsylvania State University Jeff Kellogg, Marian University Leslie Martinez, University of the Incarnate Word Melissa Marcotte, Rhode Island College Laura Phelan, St. John Fisher College Allyson Phillips, *Ouachita Baptist University* Amanda Procsal, Cosumnes River College Chuck Robertson, University of North Georgia Beverly Roskos, The University of Alabama Kamden Strunk, Auburn University Éva Szeli, Arizona State University Alaina Talboy, *University of South Florida* Margot Underwood, *College of DuPage* Dennis A. Vincenzi, Embry-Riddle Aeronautical University Daytona Beach Campus Meg Waraczynski, University of Wisconsin Whitewater Meagan M. Wood, Valdosta State University

PREFACE TO THE INSTRUCTOR

PHILOSOPHICAL APPROACH

In earlier editions, I opened the preface by highlighting that, "statistics is not something static or antiquated that we used to do in times past; statistics is an ever-evolving discipline with relevance to our daily lives" (Privitera, 2012, 2015, 2018, p. xxvii in all editions). In this spirit, and true to the foundational philosophical approach of this text, the fourth edition includes substantive changes that reflect an adaptive culture of analysis and interpretation in the social and behavioral sciences.

Initially, on the basis of years of experience and student feedback, I was inspired to write a book that instructors could truly teach from—one that relates statistics to science using current, practical research examples and one that is approachable (and dare I say interesting!) to students. I wrote this book in that spirit—to introduce students to statistics as a way of understanding the world around them and encouraging students to be critical consumers of the information they come across each day. This book, more than ever in the fourth edition, emphasizes the ongoing spirit of discovery that emerges using today's resources and technologies to record, manage, analyze, and interpret data that is reported everywhere from online and print articles to the peer-reviewed scientific literature. The value and rationale for changes in the fourth edition that embody the philosophical approach of this book are discussed under the New to This Edition heading in this preface.

What follows here are key features and pedagogy that promote student learning, make sense of difficult material, connect content across chapters, and build upon the philosophical approach in this book to promote student learning, instill an ongoing spirit of discovery in the sciences, integrate recent advances in our understanding of statistics and analysis, and encourage students to be critical consumers of the information they come across each day.

THEMES, FEATURES, AND PEDAGOGY

Emphasis on Student Learning

- **Conversational writing style.** I write in a conversational tone that speaks to the reader as if they are the researcher. It empowers students to view statistics as something they are capable of understanding and using. It is a positive psychology approach to writing that involves students in the process of statistical analysis and making decisions using statistics. The goal is to motivate and excite students about the topic by making the book easy to read and follow without "dumbing down" the information they need to be successful.
- Learning objectives. Clear learning objectives are provided at the start of each chapter to get students focused on and thinking about the material they will be learning. At the close of each chapter, the chapter summaries reiterate these learning objectives and then summarize the key chapter content related to each objective.
- Learning Checks are inserted throughout each chapter (for students to review what they learn as they learn it) and aligned with learning objectives and section numbering

to strengthen organization of content. Many figures and tables are provided to illustrate statistical concepts and summarize statistical procedures.

- Making Sense sections support critical and difficult material. In many years of teaching statistics, I have found certain areas of statistics where students struggle the most. To address this, I include Making Sense sections in each chapter to break down difficult concepts, review important material, and basically "make sense" of the most difficult material taught in this book. These sections are aimed at easing student stress and making statistics more approachable. Again, this book was written with student learning in mind.
- **Review problems.** At least 32 review problems are included at the end of each chapter in the book—with many more problems included electronically. In each chapter, questions are organized by learning objective and are aligned to ensure even-numbered questions have an answer in the answer key in Appendix E, and odd-numbered questions can be assigned for homework. This format tests student knowledge and application of chapter material while also giving students practice with each learning objective.
- Additional features. Additional features in each chapter are aimed at helping students pull out key concepts and recall important material. For example, key terms are bolded and defined as they are introduced to make it easier for students to find these terms when reviewing the material and to grab their attention as they read the chapters. At the end of the book, each key term is summarized in a glossary.

Focus on Current Research

- Data in Research. To introduce the context for using statistics, Chapters 1 through 8 include Data in Research sections that review pertinent research that makes sense of or illustrates important statistical concepts discussed in the chapter. Giving students current research examples can help them "see" statistical methods as they are applied today in research for the behavioral sciences.
- **APA in Focus.** As statistical designs are introduced in Chapters 7 to 18, APA in Focus sections are included to explain how to summarize statistical results for each inferential statistic taught. Together, these sections support student learning by putting statistics into context with research and also explaining how to read and report statistical results in research journals that follow American Psychological Association (APA) style.
- **Current research examples.** Nearly all of the statistics introduced in this book utilize data adapted from published research. This allows students to read the types of questions that behavioral researchers ask while learning about the statistics researchers use to answer research questions. Students do not need a background in research methods to read through the research examples, which is important because most students have not taken a course in research methods prior to taking a statistics course.
- **Problems in Research.** The end-of-chapter review questions include a section of Problems in Research that come straight from the literature. These classroom-tested problems use the data or conclusions drawn from published research to test knowledge of statistics and are taken from a diverse set of research journals and behavioral disciplines. The problems require students to think critically about published research in a way that reinforces statistical concepts taught in each chapter.
- **Balanced coverage of important statistical concepts.** I highlight important concepts to promote thoughtful analysis. For example, although eta-squared is still the

most popular estimate for effect size, there is a great deal of research showing that it overestimates the size of an effect. That being said, a modification to eta-squared, called omega-squared, is considered a better estimate for effect size and is being used more and more in published articles. I teach both, giving students a full appreciation for where statistics currently stands and where it is likely going in the future. Other examples include balanced coverage of null hypothesis significance testing with confidence intervals in the *t* test chapters, detailed discussion of factors that influence power (a key requirement for obtaining grant money and conducting an effective program of research), and an emphasis on assumption testing to ensure students are exposed to "best practices" in statistical analysis and interpretation.

Integration of SPSS

- Guide to using IBM[®] SPSS[®] Statistics¹ with this book that includes assumption testing for inferential statistics. For instructors who teach statistics and SPSS, teaching from a textbook and a separate SPSS manual can be difficult. The manual often includes different research examples or language that is inconsistent with what appears in the textbook and overall can be difficult for students to follow. This book changes all that by nesting SPSS coverage into the textbook and includes the assumption testing for inferential statistics in Chapters 9–17. It begins with the guide at the front of the book, "How to Use SPSS With This Book," which provides students with an easy-to-follow, classroom-tested overview of how SPSS is set up, how to read the Data View and Variable View screens, and how to use the SPSS in Focus sections in the book.
- SPSS in Focus. Many statistics textbooks for the behavioral sciences omit SPSS, include it in an appendix separate from the main chapters in the book, include it at the end of chapters with no useful examples or context, or include it in ancillary materials that often are not included with course content. In this edition of *Statistics for the Behavioral Sciences*, SPSS is included in each chapter as statistical concepts are taught and includes the assumption testing for inferential statistics in Chapters 9–17. This instruction is given in the SPSS in Focus sections. These sections provide step-by-step, classroom-tested instruction using practical research examples for how the concepts taught in each chapter can be applied using SPSS. Screenshot figures are fully annotated to provide support for reading SPSS outputs. In Appendix C, a guide for using SPSS is given for each SPSS in Focus section in the book, with page number references provided to make it simple for students to find those SPSS sections in the book.

In addition, there is one more overarching feature that I refer to as *teachability*. Although this book is comprehensive and a great reference for any undergraduate student, it is often too difficult for instructors to cover every topic in this book. For this reason, the chapters are organized into sections, each of which can largely stand alone. This gives instructors the ability to more easily manage course content by assigning students particular sections in each chapter when they do not want to teach all topics covered in the entire chapter. So this book was not only written with the student in mind; it was also written with the instructor in mind. Here are some brief highlights of what you will find in each chapter:

¹ 1 SPSS is a registered trademark of International Business Machines Corporation.

CHAPTER OVERVIEWS

Chapter 1. Introduction to Statistics

Students are introduced to scientific thinking and basic research design relevant to the statistical methods discussed in this book. In addition, the types of data that researchers measure and observe are introduced in this chapter. The chapter is to the point and provides an introduction to statistics in the context of research.

Chapter 2. Summarizing Data: Frequency Distributions in Tables and Graphs

This chapter provides a comprehensive introduction to frequency distributions and graphing using research examples that give students a practical context for when these tables and graphs are used. In addition, students are exposed to summaries for percentage data and percentile points. Throughout the chapter, an emphasis is placed on showing students how to decide between the many tables and graphs used to summarize various data sets.

Chapter 3. Summarizing Data: Central Tendency

This chapter places particular emphasis on what measures of central tendency are, how they are computed, and when they are used. A special emphasis is placed on interpretation and use of the mean, the median, and the mode. Students learn to appropriately use these measures to describe data for many different types of distributions.

Chapter 4. Summarizing Data: Variability

Variability is often a difficult concept to understand. So I begin with an illustration of what variability is actually measuring. I clarify immediately that variability can never be negative, and I give a simple explanation for why. These are difficult obstacles for students, so I begin with this to support student learning from the very beginning of the chapter. The remainder of the chapter introduces various measures of variability, including variance and standard deviation, for data in a sample and population.

Chapter 5. Probability

This is a true probability chapter with many current research examples. This chapter does not ask about the probability of rolling dice; it looks at how probability problems—from simple probability, to Bayes's theorem, to expected values—are applied to answer questions about behavior. After reading this chapter, students will not feel like they have to gamble in order to apply probability.

Chapter 6. Probability, Normal Distributions, and z Scores

At an introductory level, the normal distribution is center stage. It is at least mentioned in almost every chapter of this book. It is the basis for statistical theory and the precursor to most other distributions students will learn about. For this reason, I dedicate an entire chapter to its introduction. This chapter uses a variety of research examples to help students work through locating probabilities above the mean, below the mean, and between two scores, and even to help them calculate *z* scores.

Chapter 7. Probability and Sampling Distributions

This is a comprehensive chapter for sampling distributions of both the mean and variance. This chapter introduces the sampling distribution and standard error in a way that helps students realize how the sample mean and sample variance can inform us about the characteristics we want to learn about in some otherwise unknown population. In addition, the chapter is organized in a way that allows instructors to easily manage reading assignments for students that are consistent with what they want to discuss in class.

Chapter 8. Hypothesis Testing: Significance, Effect Size, Estimation, and Power

In my experience, shifting from descriptive statistics to inferential statistics is particularly difficult for students. For this reason, this chapter provides a comprehensive introduction to hypothesis testing, significance, effect size, estimation, power, and more. In addition, students are introduced to power in a context that emphasizes how essential this concept is for research today, and they are introduced to how content in this chapter relates to the parametric testing in the subsequent chapters. Multiple sections are devoted to these topics; this chapter uses data from published research to introduce hypothesis testing.

Chapter 9. Testing Means: One-Sample t Test With Confidence Intervals

This chapter introduces students to *t* tests for one sample using current research examples. This allows students to apply these tests in context with the situations in which they are used. In addition, students are shown how data for one sample are described using confidence intervals. Two measures for proportion of variance are also introduced: one that is most often used (eta-squared) and one that is less biased and becoming more popular (omega-squared). This gives students a real sense of where statistics is and where it is likely going.

Chapter 10. Testing Means: Two-Independent-Sample *t* Test With Confidence Intervals

This chapter introduces students to *t* tests for two independent samples using current research examples. This allows students to apply these tests in context with the situations in which they are used. In addition, students are shown how data for the difference between two independent samples are described using confidence intervals. Two measures for proportion of variance are again introduced: eta-squared and omega-squared.

Chapter 11. Testing Means: Related-Samples *t* Test With Confidence Intervals

Many textbooks teach the related-samples t test and spend almost the entire chapter discussing the repeated-measures design. It unnecessarily leads students to believe that this test is limited to a repeated-measures design, and it is not: The matched-pairs design is also analyzed using this t test. For this reason, I teach the related-samples t test for both designs, explaining that the assumptions, advantages, and disadvantages vary depending on the design used. Students are clearly introduced to the context for using this test and the research situations that require its use.

Chapter 12. Analysis of Variance: One-Way Between-Subjects Design

The one-way between-subjects analysis of variance (ANOVA) and its assumptions, hypotheses, and calculations are all reviewed. A particular emphasis is placed on reviewing post hoc designs and what should be done following a significant result. Two post hoc tests are reviewed in order

of how powerful they are at detecting effects, to give students a decision-focused introduction by showing them how to choose statistics and analyses that are associated with the greatest power to detect an effect.

Chapter 13. Analysis of Variance: One-Way Within-Subjects (Repeated-Measures) Design

The one-way within-subjects ANOVA and its assumptions, hypotheses, and calculations are all reviewed. Students are also introduced to post hoc tests that are most appropriate when samples are related. This is important because many statistics textbooks fail to even recognize that other commonly published post hoc tests are not well adapted for related samples. In addition, a full discussion of consistency and power is included to help students realize how this design can increase the power of an analysis to detect an effect.

Chapter 14. Analysis of Variance: Two-Way Between-Subjects Factorial Design

This chapter provides students with an introduction to the two-way between-subjects factorial design. Students are given illustrations showing exactly how to interpret main effects and interactions, as well as given guidance as to which effects are most informative and how to describe these effects. This is a decision-focused chapter, helping students understand the various effects in a two-way ANOVA design and how they can be analyzed and interpreted to answer a variety of research questions.

Chapter 15. Correlation

This chapter is unique in that it is organized in a way that introduces the Pearson correlation coefficient, effect size, significance, assumptions, and additional considerations up front before introducing the Spearman, point-biserial, and phi correlation coefficients. This makes it easier for instructors who only want to discuss the Pearson correlation (or any other correlation coefficient) to assign students readings that are specific to the concepts they will discuss in lectures. This also minimizes confusion among students and gives instructors more control to manage course content and readings.

Chapter 16. Linear Regression and Multiple Regression

This chapter introduces how a straight line can be used to predict behavioral outcomes. Many figures and tables are included to illustrate and conceptualize regression and how it describes behavior. Also, an analysis of regression is introduced for one (linear regression) and two (multiple regression) predictor variables. Parallels between regression and ANOVA are also drawn to help students relate this analysis to other tests taught in previous chapters.

Chapter 17. Nonparametric Tests: Chi-Square Tests

One of the most difficult parts of teaching chi-square tests can be explaining their interpretation. Much of the interpretation of the results of a chi-square is intuitive or speculative. These issues and the purposes for using these tests are included. In addition, this chapter is linked with the previous chapter by showing students how measures of effect size for the chi-square test are linked with phi correlations. This gives students an appreciation for how these measures are related.

Chapter 18. Nonparametric Tests: Tests for Ordinal Data

This final chapter is aimed at introducing alternative tests for ordinal data. A key emphasis is to relate each test to those already introduced in previous chapters. The tests taught in this chapter are alternatives for tests taught in Chapters 9–13. The tests are introduced in separate sections that make it easier for instructors to assign sections of readings for only those tests they want to teach. Again, this can minimize confusion among students and gives the instructors more control to manage course content and readings.

APPENDIXES

Appendix A is a narrative summary of the material covered in the text. This appendix is more than just "Cliff's notes" for the book. Instead, it integrates the content taught in this book to "tell a story" or narrative about how content relates across chapters, the role of statistics in science, and to bring to light how statistics can be understood in a broader context. This review is more than just a valuable epilogue for students at the end of a course; it is also a valuable prelude to a research methods course, and more than this, a valuable refresher for students looking to sharpen their statistical acumen in graduate school and into their careers.

Appendix B gives students a basic math review specific to the skills they need for the course. The appendix is specifically written to be unintimidating. From the beginning, students are reassured that the level of math is basic and that they do not need a strong background in mathematics to be successful in statistics. Learning Checks are included throughout this appendix, and more than 100 end-of-chapter review problems are included to give students all the practice they need to feel comfortable.

Appendix C provides a general instructions guide for using SPSS, with assumption testing for inferential statistics included in Chapters 9–17. Throughout this book, these instructions are provided with an example for how to analyze and interpret data. However, it would be difficult for students to thumb through the book to find each test when needing to refer to these tests later. Therefore, this appendix provides a single place where students can go to get directions for any statistical test taught in this chapter. Each instruction also provides the location within the text where readers can find an example of how to compute each test using SPSS.

Appendix D gives the tables needed to find critical values for the test statistics taught in this book.

Appendix E provides answers for even-numbered problems for the end-of-chapter questions. This allows students to practice additional questions and be able to check their answers in the appendix.

NEW TO THIS EDITION

As stated to open this preface, in earlier editions I highlighted that, "statistics is not something static or antiquated that we used to do in times past; statistics is an ever-evolving discipline with relevance to our daily lives" (Privitera, 2012, 2015, 2018, p. xxvii in all editions). In this spirit, and true to the foundational philosophical approach of this text, the fourth edition includes substantive changes that reflect a greater awareness of analysis and interpretation in the social and behavioral sciences—specifically in terms of our *transparency* in how we record, manage, analyze, and interpret data.

Since this book's first edition, there has been an awakening of sorts—a culture that is more aware than ever of the use and the misuse of statistics (Appelbaum et al., 2018; Badenes-Ribera et al., 2018; Bakker & Wicherts, 2011). To apply statistics, this awareness encompasses, in part, the need to be more transparent—in terms of what we know and what we do. More than ever, we